Towards Real Time

National Geodetic Survey / NOS / NOAA Silver Spring, MD

Main Concepts

- Modify CORS sites for real time data transmission
- GNSS receiver data
- Transmission via the Internet
- Standardized protocols and formats
- Not a navigation service!

Framework for Real Time GNSS Networks

- Federal Network
 - 200 CORS sites
 - NDGPS, WAAS, NOAA, PBO sites
 - Stream GNSS data, not correctors
 - via NTRIP and tcp/ip protocol over the Internet,
- Regional and local Networks
 - Use Federal network to calibrate and/or enhance local networks

CORS Site Modification

- Receiver modifications
 - Firmware
 - Multiple satellite systems
 - Data interval
- Communications / Network modifications
 - Routers
 - Increased bandwidth
 - Internet
- Software

Network Design Issues

- What format?
- What stations?
- What software?
- What distance?
- What data rate?
- What latency?

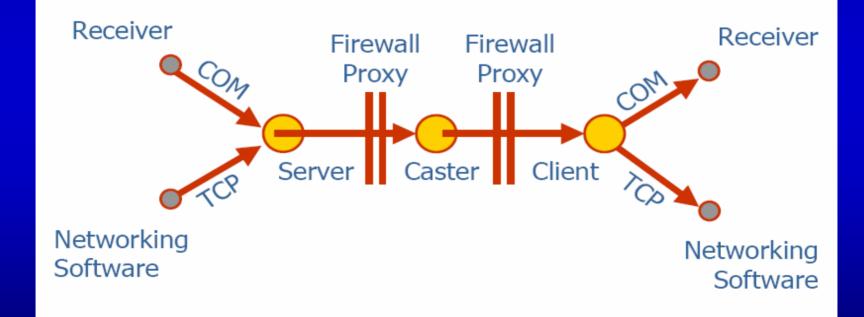
Data Distribution Formats

- RTCM-SC104
 - Versions 2.0, 2.1, 2.2, 3.0
 - Type 1 Fixed GPS corrections (1 sec)
 - Type 3 GPS reference station parameters (10)
 - Type 16 GPS special message (30,60)
 - Type 18 RTK uncorrected carrier phases (1)
 - Type 19 RTK uncorrected pseudoranges (1)
 - Type 22 Extended station parameters (15)
 - Type 59 Proprietary messages (1)

Data Collection Formats

- Raw
 - Topcon/Javad Compact (1)
 - Ashtech MBEN (5) / PBEN (5) / SNAV
 - Thales ASCII
 - SP3 ASCII
 - Trimble RT17, concise
 - Leica LB2
 - RINEX
 - BINEX

Communications


- Frame Relay USCG, NDGPS CORS ***
- Internet (FTP, rcp) State DOT's, WAAS, university CORS.
- Satellite / Modem Hawaii, PBO CORS
- NTRIP RTK CORS **

Software

- NTRIP Networked Transport of RTCM via Internet Protocol (version 1.5)
- NTRIP is an RTCM standard
- Application-level protocol streaming Global Navigation Satellite System (GNSS) data over the Internet
- Based on hypertext transfer protocol (HTTP/1.1)
- Simultaneous connections from PC's, laptops, receivers to a broadcast host
- Streams data to stationary and mobile users

Internet Transport Configuration

NTRIP

PROS

- RTCM standard
- Open documentation
- Software components developed under GNU General Public License
- Communications through a HTTP port

CONS

- Workload on server side
- Not supported by mobile IP provider

Processing Considerations for Real Time

- Centralized Processing NGS
 - Correction models
 - Ionospheric dynamic or recent data
 - Tropospheric dynamic or recent data
 - Satellite clocks
 - Multipath from past data
 - Ambiguity resolution of reference station observables
 - Usually one communications channel
- Several processing locations
 - Many reference stations lead to many corrector streams
 - Several communications channels needed

Positioning Limitations from Real Time Networks

- DGPS
 - L1 code corrections
 - Range 200 400 km
 - Meter level accuracy
 - Time delay varies up to a few seconds
 - Continental coverage
- RTK Single Base Station
 - L1 code, L1 / L2 carrier corrections
 - Range 10 to 15 km
 - Centimeter level accuracy
 - Time delay typically less than a second
 - Regional and local coverage

Post Processing Applications

- Post mission static positioning.
 - cm-level accuracy with a few hours of data, dm-level accuracy with one minute of data.
 - Solution delay one hour.
- Post mission kinematic positioning.
 - dm-level accuracy for an aircraft, boat, or terrestrial vehicle.
 - Solution delay more than one hour.
- Geophysics crustal motion.
- Meteorology water vapor in atmosphere.
- Space weather free electrons in ionosphere.

Real Time Applications

- Structural monitoring
- GIS Rapid Response, 911
- Precision guidance machines
- Meteorology water vapor in atmosphere
- Space weather ionosphere, troposphere
- Positioning OPUS (rapid solution)
- Assist other real time applications RTK

PROPOSED POLICY FOR STREAMING GPS DATA VIA THE INTERNET

- NOAA's National Geodetic Survey is exploring the possibility of streaming GPS data (not correctors) from selected CORS via the Internet.
- These data will be publicly available and free of direct user fees.
- NGS is openly distributing these data to enable other organizations to provide location based services relative to the NSRS.

PROPOSED POLICY

- Monitor the distribution of free electrons in the atmosphere.
- Monitor the distribution of precipitable water vapor in the atmosphere.
- Record the passage of seismic waves.
- While these GPS data may be applied to track the path of a moving platform--such as an aircraft, water vessel, or land vehicle—these data will not possess sufficient "integrity" to support a robust navigation service.

NTRIP Installation at NGS

- NGS Broadcaster 140.90.112.133 2101
 - Converting NDGPS and other sites for NTRIP.
 - RTK messages.
- NTRIP Server
 - Modifications made to send receiver ID and password.

Conclusion

- Streaming GNSS data over the Internet is feasible
- No significant lack of performance compared to other transportation media
- Advantages for user / service providers
- Developments for various products
- Promising solution for GIS
- Faster data access

Questions / Comments